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I N F L A T I O NI N F L A T I O N   
(L-2)  

 
 
 
If the Big Bang happened in one great whoosh, why do we have areas of high 

density like star clusters and galaxies, and area of low density like interstellar space?  That 
is, why didn't matter distribute itself more evenly?  Also, what is this I'm hearing about our 
losing stars, about the possibility that right now the universe is expanding at such a 
ferocious rate that the only stars we will see in the future will be those that reside inside our 
own galaxy? 

Both of these topics are intimately related to the idea of inflation.  We will use a 
balloon to model the expanding universe.  This should be fun.  (Let's face it, balloons are 
always fun!) 

  
 

Part A:  (initial set-up) 
 
a.) You are going to be taking data, so reproduce the table shown below.  In fact, 

reproduce it twice labeling the first one 
"normal expansion" and the second one 
"inflationary expansion." 
 

b.) Take a balloon, stretch it, blow it 
up as large as you dare (don't pop it--we 
don't have extras) allowing it to expand 
close to its maximum size, then deflate it.   
 

c.) With the balloon deflated, give it 
enough air so that its nozzle to seam 
diameter (i.e., its longitudinal diameter) is 
around 10 centimeters.  Use a centimeter 
stick on this, but don't be overly anal 
about accuracy.  Once there, twist the 
nozzle (don't tie it) for security. 

 
d.) On the opposite side of the balloon from its nozzle, you should find a dot-like seam 

(this should be close to exactly opposite the nozzle).  With the balloon inflated to the 10 cm 
diameter, use a permanent marker to put a dot halfway between that dot-like seam and the 
nozzle.  Once done, begin to place dots at one centimeter intervals creating the dot grid 
shown on the next page.  It should span approximately half of the balloon's surface (you 

 

# dotstime light radius
     (cm)

balloon radius
       (cm)
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don't have to be super accurate about this, 
but be as uniform as possible--see NOTE 
after Procedure g).  The sketch shows it 
all. 
 

e.) Using your centimeter stick, draw 
a two-centimeter radius circle as 
accurately as you can centered on that first 
dot.  (From here on, we will assume that 
that central dot is the earth.) 

 
Note 1:  What does this circle signify?  

Remember, we are using the balloon to 
model the expanding universe.  In doing 
so, we are assuming that after a certain 
amount of time (we will call this one time 
unit), the overall universe has expanded to 
the size of our balloon, or 10 centimeters.  
During that time, light will have had the opportunity to travel some distance (not 
necessarily 10 centimeters, but some distance).  We are going to assume that when the 
universe is 10 centimeters across, light will have had time to travel only 2 centimeter.  In 
other words, that 2 centimeter circle identifies the distance light can travel after one time 
unit of time since the Big Bang.   

 
Note 2:  Yes, this suggests that early on the universe expanded faster than the speed of 

light.  Don't get hung up on this.  This doesn't violate Einstein's view of the universe, 
though it may see to (we will talk about this more later).  In any case, we have to start 
somewhere.  I'm choosing to start with this set of assumptions. 

 
f.) Acknowledging that the light radius identifies the distance light can travel after time 

t = 1 time unit from the Big Bang, record this time on your "normal expansion" data table 
(i.e., put a 1 under time).  Also, put a 2 centimeter under the "light radius" for the t = 1 
point in time, and 10 centimeters for the balloon radius at that instant.  

 
g.) If our planet happened to be located at the central dot on the balloon (that is 

the assumption we have made), we should be able to see any star that is inside the 
light circle (light from stars outside the light circle will not have had enough time to get to 
us, so we won't see them).  To get feel for how many stars we can see, relatively speaking, 
count the number of dots inside the light circle.  Record that number in the 1 unit time row 
under number of dots.   

 
Note:  If your circle is accurate, there should be nine dots inside the circle with four 

additional dots right on the line (you won't be including the dots on the line in this lab).  If 
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The dots on your 
balloon won’t look so 
uniform as the balloon’s 
surface will be curved. 
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you have more or less, it's OK as it simply means your circle isn't as accurate as it might 
be.  Don't worry about that.  Record what you have, not what I say you should have. 

 
 

Part B:  ("normal universal" expansion) 
 

h.) Let's assume that at t = 2 time units, the universe has expanded to a diameter of 20 
centimeters (in fact, blow the balloon up to approximately 20 centimeters).  Record that 
time and balloon diameter on your table. 

 
i.) Let's assume that during the 1 time unit of time between the t = 1 and t = 2 time unit 

mark, light doubles its range.  That is, on the new universe (i.e., the balloon blown up to a 
20 centimeter diameter), draw a new circle of radius 4 centimeters.  This is the distance 
light has been able to travel after 2 time units after the Big Bang.  Record this new light 
radius in your table. 

 
j.) You should find that this radius is outside the original circle you drew.  Count the 

number of dots inside this new circle.  Note that if there are more than the first 
situation, it means that stars we couldn't see at the first point in time are now visible 
to us at the second point in time.  In other words, the visible universe has enlarged 
over that time interval. 

 
k.) Now, blow the balloon up to 30 centimeters.  Assume this takes us to t = 3 time 

units and that the light circle radius has expanded to 6 centimeters.  Draw that light circle 
and record the number of dots inside that new circle.  Also record all of the other 
information the table requests. 

 
l.) You now have all the information you need to produce a visible universe graph as a 

function of time for a "normal expansion" situation. 
 
 

Part C:  (inflationary universal expansion) 
 

m.) Allow your balloon to deflate back down to the 10 centimeter balloon diameter.  
Again, assume this is the size of the universe after one time unit's worth of time, and 
assume that at that point in time, the light circle measures 2 centimeter in radius.  In other 
words, go back to the original, initial situation. 

 
n.) Now blow the balloon up to 20 centimeters.  For this scenario, let's again assume 

that this brings us time to time  t = 2 time units, but let's additionally assume that during 
that time period between t = 1 and t = 2 time units, the light circle's radius only grows by .4 
centimeters.   
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Note:  The speed of light hasn't changed, so this evidently simulates a situation in 
which the universe expands very, very fast (i.e., from 10 cm to 20 cm in such a short time 
interval that light only increases its light circle radius by .4 centimeters).   

 
o.) Draw that 2.4 centimeter circle on the new balloon, count the number of dots inside 

the circle, and record all the pertinent information in your second table.  (Note that you 
may find you have fewer dots inside your circle than you had before). 

 
p.) Now, blow the balloon up to 30 centimeters.  Identify that time as  t = 3 time units 

and assume the light circle's radius has grown to 2.8 centimeters.  Draw this new radius on 
the balloon, count the number of dots inside the circle, and record all the pertinent 
information in your second table. 

 
q.) You now have all the information you need to produce a visible universe graph as a 

function of time for an "inflation" situation. 
 

 
Part D:  (flat Euclidean versus curved Minkowskian geometry) 
 

r.) Bring your balloon to class.  When there we will do the following:  Using a 
straight edge, draw a triangle on a flat piece of paper.  Use a protractor and determine the 
number of degree inside the triangle.  Record this number. 

 
s.) Using a straight edge as best you can, draw a GIGANTIC triangle on the side of 

your balloon when it is blown up to a 30 centimeter diameter.  Make the lines as locally 
"straight" as possible.  Again, use a protractor to determine the number of degrees inside 
the triangle.  Record this number. 
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CALCULATIONS 
 
 

Part A:  (set-up) 
 

0.) Nothing to do in this section. 
 

Part B:  (normal universe expansion) 
 

1.) Using the data you were given, make a half-page grid and graph the number of 
dots as a function of time for the "normal universe" expansion data.  Be sure to scale your 
grid so that you use the whole graph.  

 
2.) Looking at your graph, what is happening to the number of stars the earth can 

see as time proceeds with this kind of inflation? 
 
 

Part C:  (inflation expansion) 
 

3.) Using the data you were given, make a half-page grid and graph the number of 
dots as a function of time for the "inflation universe" expansion data.  

 
4.) Looking at your graph, what is happening to the number of stars the earth can 

see as time proceeds with this kind of expansion? 
 
5.) From what has been said in class, which type of expansion does the universe 

appear to be experiencing at this particular point in real time. 
 
 

Part D:  (triangles in different geometries) 
 

5.) You added up the interior degrees of a triangle drawn on a Euclidian (read this 
"flat") surface.  What number did you get?  

 
6.) You added up the interior degrees of a triangle drawn on your balloon's surface 

(i.e., on a curved surface--this will be our not so accurate model for Minkowskian geometry 
. . . though Minkowskian geometry is really much odder than this).  What number did you 
get? 

 
7.) How did your total degrees compare for the two situations?  What does this tell 

you about the geometry of space, assuming it is not "flat?"  (Feel free to be very vague and 
esoteric with this.) 

  
 


